skip to main content


Search for: All records

Creators/Authors contains: "Liu, Hongxing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. We develop the first spatially integrated economic-hydrological model of the western Lake Erie basin explicitly linking economic models of farmers' field-level Best Management Practice (BMP) adoption choices with the Soil and Water Assessment Tool (SWAT) model to evaluate nutrient management policy cost-effectiveness. We quantify tradeoffs among phosphorus reduction policies and find that a hybrid policy coupling a fertilizer tax with cost-share payments for subsurface placement is the most cost-effective, and when implemented with a 200% tax can achieve the stated policy goal of 40% reduction in nutrient loadings. We also find economic adoption models alone can overstate the potential for BMPs to reduce nutrient loadings by ignoring biophysical complexities. Key Words: Integrated assessment model; agricultural land watershed model; water quality; cost-share; conservation practice; nutrient management JEL Codes: H23, Q51, Q52, Q53 
    more » « less
  3. Abstract

    Rapid retreat of the Larsen A and B ice shelves has provided important clues about the ice shelf destabilization processes. The Larsen C Ice Shelf, the largest remaining ice shelf on the Antarctic Peninsula, may also be vulnerable to future collapse in a warming climate. Here, we utilize multisource satellite images collected over 1963–2020 to derive multidecadal time series of ice front, flow velocities, and critical rift features over Larsen C, with the aim of understanding the controls on its retreat. We complement these observations with modeling experiments using the Ice‐sheet and Sea‐level System Model to examine how front geometry conditions and mechanical weakening due to rifts affect ice shelf dynamics. Over the past six decades, Larsen C lost over 20% of its area, dominated by rift‐induced tabular iceberg calving. The Bawden Ice Rise and Gipps Ice Rise are critical areas for rift formation, through their impact on the longitudinal deviatoric stress field. Mechanical weakening around Gipps Ice Rise is found to be an important control on localized flow acceleration and the propagation of two rifts that caused a major calving event in 2017. Capturing the time‐varying effects of rifts on ice rigidity in ice shelf models is essential for making realistic predictions of ice shelf flow dynamics and instability. In the context of the Larsen A and Larsen B collapses, we infer a chronology of destabilization processes for embayment‐confined ice shelves, which provides a useful framework for understanding the historical and future destabilization of Antarctic ice shelves.

     
    more » « less